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THEORETICAL AND EXPERIMENTAL STUDIES O F  THE DEFORMATION 
O F  THIN SHELLS. 

*&TRACT 

In this study, we have looked for a method to ease the practical 

use of thk theory of thin shells. 

curved shells and appropriately chosen planar shells is established. 

Ultimately, a correspondance between 

Our first step was to determine which were the best equations 

on which to base our developments. 

which ultimately lead to analogous equations, have been suggested. 

We have tried to compare these various methods by examing to what 

degree of approximations they culminate when we consider various 

terms that a r e  often neglected. 

a t  a method of calculation which defines the meridian by means of the 

relation, @ = f ( s )  between the a r c  s of the meridian and the angle G 

between the normal and the axis. 

that this method allows us to stucly, through relatively simple calcu- 

lations, profiles for which the usual methods break down. 

W e  know that various methods, 

After numerous tr ials,  we have arrived 

By the use of examples, we show 

We then approached the problem of the correspondance be- 

tween a curved shell of constant thickness and a planar shell whose 

thickness varies as a function of the distance to the center of the shell. 

We  t r ied to equate the pyinzipal constrzints of the two shells which 

leads to a correspondance between their parallels and to a convenient 

h w  for tlic variation of the thickness of the planar shell. 

convenient boundary conditions, we verified that the moments were 

of the same order of magnitude in both cases. 

possible to ease the construction of an ogive shell, by experimenting 

on a planar disc whose variation in thickness will be chosen such as 

to diminish the maximum values of the constraints. 

Next. choosing 

As a result, it becomes 
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DEVELOPMENTS ON THE THEORY O F  THIN SHELLS. 
.. 

The theory of thin shells is among those in the limelight of 

contemporary interest and which a r e  still preoccupying the scientists 

of today. 

on this subject. 

concerning the small thickness of the shell result both in simplifications 

and in the need of approximations whose validity, o r  lack of it, is not 

always a s  readily apparent as might be desired. 

We need not recall in detail all the theories which have emerged 

Furthermore, we al l  know how and why the hypotheses 

In this work, we shall deal only with shells of revolution about 

an axis, all conditions being those of revolution about this axis. 

If we refer to the book of W. Flugge, Stresses in Shells, 

(Springer, 1960), we see how we can write equations defining the constraints 

on the median surface of the shell, by neglecting higher order terms. 

By considerations which w e  shall not reproduce here but which can be 

found starting on page 329 of the above referred work, we arr ive a t  the 

following formulae: 

-(rQ a ) + R N  sin+ t r N  = 'RIP, 
a+ (t, l a  ct, 

a 
am 3 1 8  +rM ) - R M  cosA = rR12m 

The N's and the MIS a r e  related to the displacements by the enuations: 
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In these formulas, the numbers D and K represent, 

Eh5 
9 2 K =  Eh 

1 --v 12(1- ' v  ) 
2 

D =  Eh5 
D =  3 K =  3 9 

Eh 

1 --v6 12(1- ' v  &) 

where h is the thickness, for the moment assumed to be constant, of 

the shell. r and 0 a re  the polar coordinates in the plane of a parallel 

on the median surface and 3 i s  the angle between the normal. to this 

surface and the axis of revolution. 

of the constraints and the moments with respect to the usual axes. 

1, s a r e  the transversal forces; p will denote the external pressure. 

u, v, and w a r e  the components of inifinitesimal deformations undergone 

by the shell in the direction of the parallel, the meridian, and the normal 

to the surface, respectively. R and R designate the principal radii 

of curvature. 

The N's and the M ' s  a r e  components 

The 

1 2 

Flugge shows (op. cit., p321 to 353) how to eliminate the terms 

in p without introducing appreciable error.  

Further, (pp357 and following) by letting, 

the equations concerning the MIS become, 

1 a x  X Mm = K[-- - + v - cot+] 

R1 a+ R2 

M, = K[#icot+ + V--- Rlam 
,I ""I 
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These formulas correspond to the equations established by Flugge on 

p. 320 (op. cit.) with the terms in R 1 2  - R neglected, that is: 

K EV for M - ( -t w )(R2 - R1' '' <R2 85 

(vcotrt, t w)(R - R1) 
K 

f.\r M. - --- a '  2 

vcoth + w 

Siace we have, 
av 
a+ -- + w 

E. = -  + R1 

where the E Is are  the usual components of strains, we see that in 

general the terms in question a r e  small with respect to the terms retained. 

The consequences shown in subsequent paragraphs (op. cit) 

vp-lidate this hypothesis. Thus we see that v3rious suppostions have 

been made and that the ultimate consequences of the approximations 

are nct evident. However, 

for now, let us notice thzt in the case of a conical shell, the expressions 

neglected above in M are actually, 

We  shall return to this point in due time. 

Before going any furthe;, we shall show another way of approaching 

the problem of the deformation of thin shells. 

the following considerations: (ref. Salet G. , Bulletin de la Societe 

Frnncaise des Mecaniciens, 

of the shell to be studied is defined by the equation, 

relates the a r c  s to the angle before any deformations occur. 

deformation takes place, the above relation must be replaced by , 
+ = f (s)  t gjs), such that the increase 

W e  note that the curvature, 

This method is based on 

June 1951, p. 17. ) Suppose the meridian 

+ = f ( s ) ,  which 

If a small 

6 A is given by, 6 3 = g ( S - ) .  
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of the meridian will have experienced an increase 

1 
R, 

6 (--) = g'(s) 
1 

With this defined, still considering the case of revolution, we 

arrive a t  the following formulas for the M.'s (Salet, op, cit., p.19): 

1 1 M = K [ 6 ( - - )  t v 6  ( + I  
R1 

c) R 
2 

1 

1 The increase 6 ( -) which appears in these formulase is easily found 

to be equal to, R2 

6 (-) = - sin4 6 r g - - -  1 C O S A  

r r r  R2 
The author adopts the following approximation, 

1 cos+ 
6 (-) = - g r R2 

neglecting the second term with respect to the f i rs t  by reason of the 

argument that follows. 

along a parallec. of -Sr W e  note first that a unit of expansion - 
r 

the surface is equal to 

However, if S is the limit of the elasticity of the metal, it is obvious 

that N, - - V  N must not exceed S; thus we must have, 
(f, 

S 

S sinh 
E r  The absolute value of the term under consideration is then less  than - ---- 

Corresponding to i t ,  we hpve in the moments M and M,=, increases 
3 

which themselves correspond to increases in the stresses on the surface, 
Eh 1 Sh equal to, ---S(-- ) < -. - . 

2 R, 2% 
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Since the thickness h is very small with respect to the radius of 

curvature R we can conclude that the term in question can be neglected. 
2' 

The preceding considerations deserve a verification. We must 

ultimately determine if the quantity 

sin+ - N - v N ,  
--B ___--I- 

- 1 = -- (N6 - v N )-- 
sin+ 6 r 
_I_ -.. 

ER2 
r r  E + r  

C O S A  -- g *  r 
can be neglected with respect to 

Such a s  it may be, for the time being, the calculations ( Salet 

op. cit., p. 20) show that we obtain the following equation for the bending 

moments M 2nd Ni 
3 

N andNe : 

f D r  ?!le shearing s t ress  t', and for the constraints e '  
3 

= Eh3 -. !cos4 , -- - - L  g t v g'] 
2 ,I 12(1- v I r M+ 

r 

2 
t v ---f 

r 

cos3 
[g "  t e'- Eh2 

r r 2 t =  
12(1- v ) - 

2 3 

r 

P r  Eh2 ' 1 cos 3 = - t .---Z/gllcot+ t-- - --gl - N t VCOS$ !.ig] ' 2hsinCI 12(1-v )L r sin? 

t r  cos$ 

p inh sin ~ I 
I 

I .g"' t (2cot-5 - 

---.- pr (1 
hsinC, 

rf 
--.- ) 

2 sin+ 
t Eh2 1 1 -[( v t *)f' sin 3 

cos+ 

sin 3 
+[(cos+ t 2 

2 1 cos 4 ]g' 
t -- r -7-- sin+ 

3 
f '  cos 3 

T.---- )-. t 
J '  r sin.! 

The function g ( s )  which defines the deformation of the meridian 

satisfies the differential equation, 



where the coefficients a, b, c, d, and k have the following values: 

cos+ 
r 

a = 2ftcot+ - 4-.---- 

2 1 t cos A) 2 2 
f '  - - 7 - 2  ' 

t f"cot+ 
5 - 2sin 3 f 1  b =  ----_l_l__c 

sinh r sin 3 

2 - -.----- 
f ' '  2COS+ f '  t 2 v sin+)- 

f' 1 

r 
c = (-cot+ - Zsin+cosQ)- t (--- 2 

sin+ r sin + r 2 

2 
2 2 l t c d s  + f'' 1 

2 f '  -12(1- v )- - + _-- (1t2sin +)- t [ ( I t  v )sin + t ----- 
sin + r sin+ r 

2 2 
2 sin + cos + 

2 3 2 2  
h r  

d =  
sin+ f ' l l  f ' ' 

t [( v - l)sin+cos+ - cot+]--- t v -.. .... 
2 

r r * \  

We shall now examine particular cases in order to more ef- 

fectively verify the quality of the approximations which have been made 

in methods used. 

that of a conical shell. 

manner in the theory of Flugge. 

We shall consider the case of a spherical shell and 

These two  cases a r e  treated in an analogous 

Let us recall that i n  the case where the shell is a portion of 

a sphere of radius R, the equations, of equilibrium take the form 

where the constraints M and N a re  defined as a function of the small 

deformations u, v, and w by the following equations: 
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1 Eh av N = ------[w t --t v (w f vcot4) 
a+ I 2 

R(l-v ) 

= Eh3 2 2 i'(" a+a+ - v) t v cot+(= - 
4 12R (1- v ) 

The above expressions should be substituted in  the equilibrium equations 

given on the preceding page. 

We immediately see that the combination, 

1 aw p = -(--v) 
€2 act) 

plays a dominant role here. 

functions of p , and substituting into the third equation of group (1) 

w e  have: 

The values of M can be expressed as 

2 2 aZP 2 12R (1-v ) ~ 

4, 
- t -cot+ - p (cot + t v ) = 

a 3  Eh3 

This constitutes the f i rs t  relation between p and D We shall 

obtain a second one by the following process. 
+ *  

The equations defining the N's a r e  equivalent to, 

2 R(l- v ) w t vcot+ = -.-- (No - v NQ) Eh 

Let US differentiate the second of these equations with respect to cf, ; 

we then have three equations linear in- , w, - as functions of 

v, N+, andNe . Then, 

av aw 
a+ a+ 

, 
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However, the second equation of (1) gives, 

and the first equation of (1) consequently becomes, 

8 .  2 a a+ -.-- (N3sin + )  t $2+sin+cos+) = 0 

We conclude 
K N sin+ t 0 cos+ = -- 3 Q sin+ 

where K is a constant. 

from the preceding relation. 

From this we obtain N , and consequently N e  
4) 

.Substituting these values of N into 

equation (21, we have a second relation between P and I= , 
$ 9  

The details of these calculations can be found in the work of .W.Flugge. 

The essence i s  a s  follows. 

Let us introduce the operator, 

Our two equations in p and 9 become, 
9 
2 2 

12R (1 -v  .- 

Eh3 

- U p )  - v p  - 4 Q 

Eh L(Q ) t v P+ = -- 
2 p  + 1- v 

Letting 2 
3R2 V h4 = -- - - 
- 2  4 
h 

we have , 
4 

LL(Q+) t 4A O+ = 0 

- 8 -  



I 

Thus we a r e  left with equation (4)to solve and then substi- 

As Flugge has noted, equation tuting into formula (3) we obtain P . 
can also be written as 

t 
2 

2 Eih Q ] 
+J 

+ 2 2 r i X  0 1  
4 

0 

t where. 6 = - 1. This last equation has two particular solutions which 

a re  themselves second order equations of the form, 

2 L(Q) t 2 0  ih c) = 0 

It is enough to consider only one of these second order equations since 

the solution of this equation, which has imaginary coefficients, a r e  

themselves imaginary; consequently the imaginary part and the real  

part a r e  separately solutions of equation 

we then have four particular solutions. 

combination of these. 

. This latter being linear, 

It is sufficient to make a linear 

The problem has been reduced to solving the equation, 

L(Q) t 2 o ih 0 = 0 

whcih, by a change of variables 

2 

P = zsin+ 2 

becomes a hypergeometric equation, 

x = cos + 

2 1 - 2ih 2 d z  

dx2 2x(l-x)dx 4x(l-x) 
z = o  1 - 5~ dz - - -.__ - +  

We shall not  reproduce here the details of these calculations which 

can be found on page 325 of the work of Flugge (op. cit. ) Now, we 

can determine, by means of the explicit formulas thus defined, whether 

the approximation of which we spoke previously is valid. 

If we adopt the method of calculation indicated on page 3 of 

this report, we shall very simply find the following values for the 

coefficients a ,  b, c, d, and k: 

cos+ 2 2 

R R 2 2  sin 3 R sin C, 
; c =  - -  (3 t 2sin 4 )  3 3  

(?cot+ 3 - sin 3 a = - .-_ __ , b = -  

-9-, 



2 2 2 4  12(1- v ) cos +(3 + sin 3 )  t v sin A h 
4 4  

d =  - t 
h2R2 R sin + 

2 
18p(l - v )cot+ =-- 

Eh3R 

The corresponding equation in g is then a fourth order linear 

differential equation which is easy to solve numerically by known methods. 

Then, without difficulty, we can proceed to verify the gpprbxirnation 

stated on page 5 . 
rical computations whcih can be performed on computers. 

will be indicated later. 

This verification simply demands fairly long nume- 

The result 

Let us now examine a second particular case, that of a cone 

of revolution, again requiring symmetry of revolution around its axis, 

Under these conditions, the angle + between the normal to the surface 

and the axis remains constant,, equal to a , and we must replace this 

variable by the a r c  s of the meridian as measured on a ray of the cone. 

The elementary formulae, 

= scota , ds = %d+ , r = scosa, R2 
of which the first holds even before supposing + to be constant, im- 

mediately give the following formulae for  the equilibrium conditions: 

,-, d(sM+ 1 = S L  - Me 
ds 

We immediately have, P being a constant, 

s 5  t sN tana = P 
3 D 

A N = - 3cota t ---cota $. S 
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On the other hand, a simple calculation leads to the following 

expressions for the N's and the MIS: 

W' M = K ( s  t v w1') e 
(7) 

where ' designates differentiation with respect to s. Substituting the 

values (7) into equation (5 ) , we have, 3 

K(sw"' i- w") - Kw' -- = s 2  (9) 
S 

If, on the other hand, we eliminate v between equations [a), we have, 
2 s(N\ - v N' ) '  $. (1 t v )(Ne - N3)  - D(l- v )w'tana = 0 + 

Let us replace the N's by means of formulae (6) , and let sc) = T, 

we obtain, 

T P 2 2 - D(l- v )wltan a sT" + T' - - = - -  
s S 

Then, equatipn (4) takes the form, 

c 

The elimination of w' between (10)and (11) is now easy. Let 

we have, 
2 2 

WI = - -----. -- - -_ . 

D(1- V ) 6  D(1- v ) 

Pcot a 1 cot Q 
2 LIIT) 2 

but, we see immediately that, 
1 

L1($) = 0 

such that, by substituting w' into equation (ll), we have 

D 2 2 LIL1(T) = - -- (1 - v ) tan a K 

-11 - 



the preceding equation can then be written as 

2 2 2 
L1( LIT t i 6 T )  - i 6  (LIT t i 6  T) = 0 

such that, by the same method already used, we are  left to resolye the 

unique equation, 

(13 1 2 
L1(T) t i 6 T = 0 

which, due to the presence of imaginaries, will provide not only two 

but four particular solutions to the linear equation to be resolved. 

By a change of variables 

'1 = 2n/-?Js = y q r  
equation (13)leads to the Bessel equation 

It is precisely this equation which allows Flugge to write the detailed 

solution found on page 3 7 3  of his work . After the introduction of the 

usual Kelvin functions, elementary calculations lead to: 

1 2 2 - -bei'y) Y + A. 2 (beiy t -berly) Y 
2 2 

fBl(kery - -kei'y) Y t BZ(keiy t -ker'y) Y 
Q = -  

8 

N = - Ocota ( This condition becomes nccessary if we assume 
(3 

essentially, that the cone is not truncated in 

the neighborhood of the peak. ) 

2 

4 

Al(yberry - 2bery t -bei'y) t A (ybei'y - 2beiy - L e r ' y )  ' 
4 I 

p-Bl(yker'y - 2kery t -kei'y) t B (ykei'y - 2 keiy - -ker'y)' 

1 (A1(Vybci1yt2(1-v ) ( k L i y t -  Y ber'q)] - P  2[~ybcr'yt2(1-v)(bery--bc1'yi  Y .  

2 Y \ 
I 

cota( Y N = - -  
2s  - e 

Y 2 Y I 
\ 

2 2- . 

L I  

"@ = 3 2 2 
; tBI[vykei'yt 2(l-v)(keiyt-ker1y)] Y - BJvyker'yt yl-vXkery--kei'y)] Y 
f 
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2 
Y Y 
2 

A1[ Y ybei'y t 2(1- v)(beiy t -berly)] - AJVyber'y + 2(1- v)(bery-Zbeily)] 

B1[ v ykei'y t 2(1- v )(keiy t -kerf$)]- B2[ vyker'y t 2(1-v )(kery--keily)] 2 J  <, M, = {  
Y Y 

We leave aside, for  the time being the difficulties existing around the 

peak of the cone for s = 0 ,  and examine the validity of the approximations 

made at the beginning of the theory, namely, i f ,  a s  indicated on page 3 

the expression 
2 tan a S = K(vc0ta + w)T 

L. 
S 

otherwise written as, 

S = K- 

is truly negligible with respect to M . 
V?e know that for large values of s ,  the Kelvin functions have 

a 

asymptotic expansions that.can be-easily handled. 

expansions, we can give simple values to M and N (see Flugge, p. 374). 

The following evaluations result. 

By using these 

First, we easily perceive that the terms having the coefficients 

A dominate in the above expressions: 

however, since the considerations which follow maintain the same 

significance i f  we retain the terms having the coefficients B. 

shall neglect these latter in order not to clutter our equations. 

This is of no great importance, 

We 

For large values of s , u s e  t lx  zppropriate ,pproximationo 

.for the Kelvin functions, and find, 

and the corresponding estimation of M becomes, 
G 
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V Y W  R 
yh- 

Y* 

2e 
Me = [ Alsin( - 2 8  t - )  - AZcos( 5 t g) ]  

K '74 wz 
We see that the first of these expressions is of the order of - 6 -  e 

that is, substituting the values of the coefficients K and D, of the order,  
D , 

while the second expression is of the order,  

-3/4 y/Jt 
S e 

Thus, a t  least for appreciable values of s , we find that the first ex- 

pression is quite negligible with respect to the second. 

the use of the method followed in the preceding paragraphs. 

This validates 

Still keeping the example of the cone, let us perform 

this same operation by the method developed on page 4 

at the following equation, 

. We arrive 

g v v  = ag"'  + b g v f  t cgv + dg + k 
in which the coefficients have the values stipulated on page 6 . 
case a t  hand, we find for these coefficients the following values: 

For the 

18p(l - v &) cota ; k = ---- 12(1 - v L )  
2 

d = -  
Eh" S 

such that the equation in g can be written as,  

S h- s 

This linear equation is easy to study. The particular solution 

3 
g0 2Eh 

- - - - scota 

is immediately obvious and we have only the homogeneous equa$hgn left 

to solve. For  this latter, we can easily construct two solutions a s  

-14 - 



power aeries of the form, 

n 
t ..... 2 

p,s t p-s t ........+ p,s 
A L. 

Letting 
2 12(1 - v ) A =  

h2 

we obtain the condition, 

t n(n t l)(n Apn 

I1 

B = 4cota 

Thrr w e  obtain two solutions a s  power aeries in 6 ,  of the form, 

and 
1 

0.3 2nt2  
S 

2--- - - - s2 t l ( - l )n -  An 

1 (B+l)(Bt3). . . (Bt2n-1) 2. 3-4'- 50 6'- . (2n) (2nt1)(2nt2' 82 

A general solution, then, is ,  

g = go + Ag1 4- cLg2 

Since the other solutions of the equation in g have a discontinuity for 

8 = 0 , the above solution becomes the only acceptable one for our 

example. It is now easy to formulate the quantities, 

which a r e  to be compared, and to not if the first one is negligible with 

respect to the second one. The numerical calculations a re  long but 

without complications. The formulas for the N's a r e  given on page 5. 

We can assign arbitrary values to the coefficients A and p ,  or ,  choose 

them such a s  to satisfy imposed boundary conditions. 

computations which we have outlined here but shall not reproduce in 

full detail, we find that the qpproximation is valid. 

From these 

From what has preceded, we arr ive at the following observation. 

The method based on the function g is more advantageous than the 

method, which we designate as classic, initially exposed. Although 

-15 - 



this latter method gives,iin the case of a a n e ,  an explicit solution 

composed entirely of known functions, consequently resulting in four 

elementary solutions to the fourth order differential equation which is 

the center of the problem, the method in g gives simpler calculations 

introducing only two very simple series (much easier to calculate 

than the Kelvin functions) while rejecting the two elementary solutions 

which become infinte for s = 0 since the geometric significance of 

g forbids i t  to have large values. 

From the point of view of adequacy of approximations, however, 

both methods a re  equally acceptable. 

Let us now examine in greater detail what happens around the 

peak of the cone ( for s = 0 ) where difficulties seem to be manifested. 

We shall see that these difficulties are only apparent and at the same 

time we shall see why we can neglect the terms affected by the coefficients 

B in the formulas on pages 12 and 13. 

In the classical method we have the formulas, 

4 8 

2 
b e r y  2 1 , b e i y %  - 

which a r e  approximately 
Y 

4 

for small values of y. Next, we have, 

4 m t 2  
(1) 0.3 

Y ; V  -ber y t 1 (-l)m - (bei p } i o q  + (2mt2)  
2 4 kei y = 

0 [ (2m t1) ! J 

-16- 



with 

where y 

1 1 
2 m t -  t ...... t- - y 1 

liJ ( m )  =1 
is the Euler constant. 

With the aid of thesesformulas, it is easy to see that in the 

expressions for the functions '1, N, and M on pages 12 and 13, the parts 

affectedf by the coefficients B become infinite for s = 0, such that we 

must require the coefficients B to be zero. The parts affected by the 

coefficients A provide the following values as  s goes to zero: 

W e  now see why we have neglected the terms in B in the preceding 

development since these vanish f o r  the case of the conical shell. 

We rework the same problem now by using the method of 

the function g. 

ordinarily simpler calculations than the above method. 

We shall see how this more direct method gives extra- 

First ,  a s  on page 15,  the value of g to be considered,k., 

2n t l  co 
cota An s 

- 2 s -  t k[. t x  
B(Bt2)-  (Bt2n-2)*l0 2-32.4. (Sn t l )  2Eh 

2nt2 03 
(-1r An S 

(2nt2) ( B t 2 )  - (Bt2n-1) 2 . 3 . 4  0 * * *  

t P [  s2 t 2 I g =  

is immediately free of terms which become infinite f o r  s = 0. Next, 

we must substitute the function g into formulas giving the N's and the 

M ' s ,  given on page 5. 

sence of denominators, the expressions g / s ,  g'/ s ,  - g /  s , remain 

finite, so that the value s = 0 introduces no difficulty. A t  this point, 

W.e, immediately see that in spite of the pre- 
2 
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we obtain the following values: 

5 Eh 2 pcota 

+ 12(1 - v 2 )  12(1 - v L, 

N =  Eh2p cota : N t i - -  - 

Let us suppose, for example,that the cone is held in a cylin- 

drical pipe such a s  to constrain the motion of its peak only along its 

axis. Then, since the unit of expansion of a parallel equals, 

we see that the quantity Ne - v N 

for s = 

ditions requires that the coefficient p be zero, and  the second con- 

dition, for  s = s will be a linear expansion with respect to X,  so that 

the corresponding function g wil l  be completely determined. All  other 

cases of particular boundary conditions whould be treated in a similzr 

fashion. 

must be zero for s = 0 ,  and + 
= the length of a ray of the cone.) The first of these con- 

( 

1' 
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APPLICATIONS O F  THE METHOD OF THE FUNCTION r r g r l .  

In this section, we should like to demonstrate the advantages 

of the method we have just described and which we designate as the 

method of the function g ,  for  concrete applications. 

this advantage by working a particular problem. 

only a few special cases a re  of interest since one is limited by physi- 

cally realizable constructions. 

We shall measure 

In any respect, 

Thus, we a r e  led to use, for shells of revolution, meridian" 

that take the form of the curve of anaarch, that is, two joined circum- 

ferences, o r  , the profile of a legthwise slice of a truncated cone. 

Let us concentrate our attention on the case of the meridian 

We shall begin by examining the solution a s  given by the as an arch. 

method of the function g. 

case of a given arc; the difficulty here wil l  be in passing from the a rc  

of one curve to that of another not havine the same analytical definition. 

We have already shown how to study the 

Actually, the meridian is composed of two a r c s  of circles, 

whose centers a re  I and J ,  a s  shown in the 

adjoining sketch. We can determine the 

dimensions of the figure by giving the 

legths OA and OC; we can also define, 

i f  need be, the angle a such that the 

point J will be in the middle of IB. 

This stated, the problem of the 

deformation becomes, a s  we have already 

seen, 

entia1 
Y the integration of a linear differ- 

equation of the form, 

g'v = agrll  t bg" t cg' t dg t k 

where the coefficients a, b, c, d, and k have known values on the a rc  

AB, and different values, also known, on a r c  BC. 
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Let us first study a r c  AB. The solution corresponding to 

the differential dequation will  depend linearly on four constants, of 

which two will  be determilied by initial conditions. Let us call the 

remaining two constants X and k; these will be determined subse- 

quently. 

W e  recall the values of the coefficients a, b, c, d, and k 

on the a rc  AB to be, 

2 3 - sin + 
2 2  R s i n  4 

2cot + a = - - -  ; b =  

R1 1 

Cot4 2 
c = -  ( 3 t 2sin + ) 3 2  R sin + 1 

Cot4 2 
c = -  ( 3 t 2sin + ) 3 2  R sin + 1 

2 2 2 4  
cos 4 ( 3 t sin 41, t v sin 4 2 

1 2 ( 1 - v )  + 

4 4  R sin + 
d = - -  

h2Rt 1 
\ 

2 
36 ( 1  - v ) COS$ k = -  

Eh3 r 

where R designates the radius I.A and h is the thickness of the shell. 
1 
We shall integrate the corresponding differential equation 

by letting the a r c  5 vary from 0 (point A) to s ( = R a) at point B. 1 1 
We shall not dwell here on the complication resulting from 

the fact that the coefficients a, b, c ,  and ~.'~jeQo~e.c~s~onti.nuous ;; 

for  s = 0 , since the products as, bs , cs  , ds remain finite; we 

can apply to the equation the method used for the classic Euler equation. 

Next, we must pass on to arc  BC, that is to say, we must 

2 3 4  

operate on a new differential equation. In the coefficients a ,  b, c, and 

d,R€$ must be replaced by R 

IT 2 . 
SO desired, we can arrange to let R = 2 R2. 

adn the angle 4 must vary from a to 
2'  

The a r c  s will have the value %a t Rz( 4 - a ) from B. If 

1 
The difficulty is to know what initial values to adopt for g,  
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g', g l ' ,  and gll; corresponding to point B in the new equation. 

us note, in effect, that i f  we had on AB, 

Let 

on BC we now have, 

dg with r = OJ t R sin+ 
2 g' = -- R2 do 

The coefficients of the differential equation undergo a d i s -  

continuity. 

g", and g"' ,J 
it must necessarily remain continuous for the physical reason that 

we can allow no break in the curve. 

defining the strains and the moments. 

What will be the consequences for the quantities g ,  g' ,  

Since g represents the variation of the polar angle, 

We must now refer to the formulas 

Those representing the moments 

a re  of the form, 

cos+ 

r 
M1 = H(- g i- v g ' )  

cos+ 

These moments 

= H ( g '  t V- g )  M2 r 

where H is a constant. must be continuous B o  

Since g remains the same, g r  ( that is  dg ds ) must retain the same 

value; this is further required by the fact that the meridian curve 

must not have angular points. 

Next, the formulas f o r  the constraints in the principal directions 

(..*-established in our quarterly status report no. ) a r e  as  follows: 

cos+ 
2 3 

cos + g' cos 4 
N1 = l r l - -  t H1[ cotQ,gi't - -1 - ( - t u -  k , I  

R1rl 
2 

1 1 r sin+ 2hsint$ sin+ r 

3 - -3- ( 1 -  -1- t H $ 4 -  r gilt t 2cot4 gi'  - ZG'Jl t- ' cos (t, f 
r 2 

1 s in+r  2' 1 1 
2R sink sin+ hsin+ N2 - 
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I I 

for the a rc  AB; for the arc  BC, we replace the index 1 by the index 2 

in the above equations. 

The main point is that these expressions a re  linear functions 

of g, g '  and g t l  for N and N and also of g l I 1  for N By stipulating 1 3' 2' 
that for + = a, the valu.es of N and N a r e  to remain unchanged, we 2 3 
obtain two linear equations which will determine g" and g t l l .  

fear arriving a t  an impossibility by stipulating that N not have any 

discontinuity. However, it is easy to show that this wil l  not occur, 

and that the values already obtained for the constants assure the con- 

tinuity of N 

the formulae which led to the determination of the values of the N, s 

is the following, 

We may 2 2 

1 

Moreover, this i s  further true from the fact that among 1' 

- pr t N ~ C O S +  - N sin+ = o 
2h 1 

It is thus obvious that N will be continuous for + = a if N 

We now have all that is necessary to pass from the a r c  AB 

is. 1 3 

of the meridian to the a r c  BC on which the nemerical integration of 

the equation in g will  be performed as  it was on the first a r c  but with 

new values for the coefficients. 
I 

In all that has preceded, we have left the initial values g (0) , 1 
It i s  useful to know how to define these and g" '  (0) indeterminate. 1 

constants. 

first a r c  is of the form, 

First, it  is clear that the solution in g which holds on the 

g ( * s )  = P ( s ) A  t C ? ( s ) p  + R(s) 
To define tlie functions R, a ,  and R, it is sufficient to undergo the 

calculations de scribed above by adopting the following initial conditions: 

for P: let k = 0 in the equation in g and calculate the solution 

corresponding to A = 1, p = 0.  
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for 9: let k = 0 and assume initially the conditions A = 0, 

p = 1. 

for R take the full equation with k having the value given on 

page 20 and take as initial conditions A = 0, p = 0. 

The constants A and p figure linearly in all the equations 

considered up to this point. 

mately depend on the boundzry conditions imposed on the system. 

If, for example, the shell is constrained at C by a sleeving which 

forbids all expansion towards the exterior, g and g'  will have to be 

zero at  C. This will give two linear equations for A and p which will 

determine them. Fuzther belaboring of this point =ems unnecessary. 

Their precise determination will ulti- 

Having obtained these developments, let us next study the 

same problem, the meridian a s  an arch, by using the so called classical 

method 
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We shall note a singular particularity, namely, that although 

at  the beginning of these calculations we find classical functions, in 

this case, hypergeometric functions, which avoid the problem of 

nurxerical . integration, at least a t  first, this advantage becomes 

ultimately outweighed by an embarrassing difficulty. 

Let US star t  with the equations of equilibrium of the shell. 

With the usual notations found in the work of W. Flugge, these equations 

for the a r c  AB of the meridian are as follows: 

d 
-( N+sin+ ) - N cos+ - Q sin+ = - p sin+ 
d+ e + Q 

d r\ sin+ ) t N, sin+ t N sin+ = p sin+ a&( , +  0 (3 r 

d &( M+ sin+ ) - M a cos+ = VinQ 
Eliminating N between the f i rs t  two equations gives, 

2 d &- P+ (b + r sin 4 t 9 sin+cos+ = sin+ ( -  p sin+ t p cos+ ) 

from which, letting P be a constant of integration, 

and consequently, 

r- 

W e  know that the constraints N a r e  related to the small deformations 

u, v, and w by the formulas, 
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a 2( N+ - v N ) 8 
v ' t  w = L  

D(l- v ) 

a 

D(l - v  ) 6 )  vcot$l t w = ----- 2 ( X - v N  a 

Let us differentiate 

and eliminate VI and w at the expense of v and w' among the three 

relations thus obtained, 

the second of these equations with respect to + 

After several elementary calculations, we have, 

But if we let, 

w1 - v  = ax 
this becomes, 

Let us now substitute the N's from formulas (16) and (17) into this 

equation. After a few easy transformations, we have, 

2 - - 1 1  - 9' cot+ t 9 (cot c;, - v )  t (1 t v )p+ t p; 2 
D ( 1 - V ) X  = '% (1! + 

On the other hand, the moments M can be written as, 

K 
M e  - a 

- -.( x cot+ i- v X I )  

such that by eliminating the MIS among these two equations and equation 

(15-3) , we have, 

. 

2 2 a 

K 
R 

t x' cot+ - (cot t v )x = - 
6 

x" 
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As usual, let, 

L O  
Equations (18) 

2 
= ( ) "  t ( )Icot+ - ( ) cot c$ 

and (19) become, 

- a2 2+ 
) - v x  - -- K 

Eliminating x between these last two equations leads to, 

Let us apply these results t o  the case of constant external 
= 0 pressure equal to p. 

and p = p. Equation (20)defining r is then the same as  that of W. 

Flugge, and the formulas defining the N 1 s  become, 

In the above formulas, we must make p + 
r 4 

with 

for Q . However, we know that i f  we let 

3 = zsin+ 
4 

2 
3 x = cos + ; 

3 the equation in  becomes a hypergeometric equation 

- _--- Q P Z  = 0 y - (1 t a + P)xdz 
2 d z  

-2 
dx 

t 
x(l - x) dx x(1-x) 
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where the constants Q, p I and y have the following values, 

p = - [ 3  1 4 qJX];  1 
Y = 2  

where we have let, 

2 
V 

2 2  - -  - D ( l  - V  ) a  
4K 4 

- 4 
K 

Let us move along the a r c  AB of the meridian. A t  the peak 

A, we have c$ = 0 and x = 1. 

points in the hypergeometric equation. 

the quantity, a t p 
where the use of hypergeometric functions poses special analytical 

difficulties, 

which are regular in the neighborhood of the point x = 1, and we must 

use these solutions on the a r c  AB. 

This point is one of three singular p 

Furthermore, for this latter, 

- y ,  is a whole number. We  a r e  thus in a case 

We must define two particular solutions of the equation 

We shall not develop the point .of defining a particular sol- 

ution on a r c  AB because we shall see in what follows that is is cornBle- 

tely unnecessary to obtain such precision here. 

In effect, we shall have to join the solution suitable on a r c  

In order to obtain this latter one, AB with that suitable on arc BC. 

we will  have to integrate formulas analogous to equations (15), (lo), . . 
and following, but written for the arc BC. 

Let US write these new equations. If b is the new radius of 

curvature, the equilibrium conditions for the shell are: 

d 
dT('rN+) - bNg cos+ - r T  + = - brp+ 

d - ( r o  ) t bNo sin+ t r N  = brp, 
de 4) + 
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and the formulas defining the N's and the M u s  now are ,  

N + 

N t i  

3 M 

MG 

v' t w 
b 1 

vcos$ t wsinr$ - t v  - D( 6 + bsin+ 

) 
K w0 w'cos$l - t v  - -&- 6 t bsin+ 

since the radius vector is 

r = 6 + bsin4 

and the principal radii of curvature of the shell a re ,  

6 = b t - -  R 1 = b ;  R2 sin+ 

From these equations, we must try to derive consequences 

analogous to those which we have deduced from the equations con- 

cerning a r c  J.B. 

ges t  that the problem here is parctically inextricable. 

it seems impossible to obtain an explicit solution. 

However, the results obtained above strongly sug- 

By this method 

This demonstrates that the method based on the intervention 

of the function g has a considerable advantage o.ver the classical 

method since no such difficulty occurs with the former method when 

passing from a r c  AB to a rc  BC. 

For this reason, in what follows, we shall use the method 

of the function g. 
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CORRESPONDANCE BETWEEN CURVED SHELLS AND PLANAR SHELLS. 

EXAMPLE 1: OGIVES OF REVOLUTION 

.. 

The theory we have developed can bt used in numerous ap- 

plications. 

practical inte r e  s t . 
We shall elaborate on two which seem to be of particular 

In the construction of ogives of revolution ( such a s  would be 

used a s  satellites for interplanetary experiments ), the strength of the 

structure is obviously of the greatest importance. 

related to the form of the meridian of the shell of revolution. 

shell is generally assumed to be of constant thickness. 

This strength is 

The 

In order to simplify the preliminary experiments in the 

building of a model of the ogive of revolution, it would be interesting 

to t r y  the following method. 

dance between the shell to be studied and another shell of simpler 

form, for example planar, but ha*ng a variable thickness. 

correspondance should be such that two of the constraint components 

be equal respectively a t  the corresponding points M and m of the two 

shells. 

this will not assure identity of the state of the constraints in the two 

shells. However, i f  two of the components, for example, N, and 

N 

( in this c2se the moments ), which will not have been made equal 

a priori. 

obtained in replacing the curved shell by the planar shell. 

variable thickness of this latter could be experimentally modified so 

a s  to give the least dangerous values possible to the constraints. 

The results would next be applied to the curved shell whose profile 

is obtained by the correspondance established between the two shells. 

We should like to establish a correspon- 

The 

Since there a re  more than two functions to be determined, 

are made equal, it will be easy to compare those amponents e 

We would then have a precise idea of the approximations 

The 

In this calculation we have two unknown functions. One is 

the expression, 

u = f (s)  
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which establishes the relation, unknown beforehand., between the 

curvilinear abscissas, u and 6 ,  of the two shells; the other is the 

unknown function, 

h = G (8) 

which defines the thickness of the planar shell at the point s ( s is then, 

the distance to the center). 

By means of the method of the function g , we shall deter- 

mine, if need be, by numerical analysis, the values of N+ (a), N (u ), 

M (u), and M (u) which correspond to the value u of the a r c  of the 

meridian, o r ,  to put it in other words, to the angle .h between the 

normal to the shell and its axis of revolution, 

9 

m 8 

The problem having been stated, we shall now study the case 

of a planar disc of variable thickness. W e  assume, of course, that 

the constants of elasticity a re  the same as those for the curved shell, 

that is to say, both objects a r e  made f r o m  the same metal. The 

usual equilibrium equations and the formulas defining the N's and 

the M's,  are ,  for the general case: 

- f ( rN,, ) - R1N6cos+ - r 2  - - 'RIP,, 
d 
d+ (? 

d ) t R N  sinh t rN3, = TRIPr 
r d+ i e  

dv - t w  
1 vc0s.t) t wsin$ 

t v  r 5 
dv 
- t w  
d4 + v  d--- 
- 

3 vcos+ t wsin4 = D[ 
R1 Na r 
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dw - cos+ K d$ 
r 

ci 1 dw 
Mo = - [  + v$(Fx)l 

1 R1 

If 5, the radius of curvature of the meridian, becomes infinite -- 
recalling that Rid+ = ds -- the above equations become: 

d - - (rN ) - No - - rp, d b  + 

d - ( rr )+)  - - rPr ds 

d - ( r M )  - M = r 2  
ds + 9 (3 

N 
4 

M 
li, 

Ma 

dv V = D ( z  t v  - - - )  r 

V dv 
= W r  +"XI 

1 
v dw 2 

d w  
t -- r ds = K ( 2  

ds 

Thus, for a planar disc of constant thickness, if we substitute the 

values from above into the equilibrium equations, we obtain, 

r 3+ W' t v w") = ( r  ( SW" t v w')t - 
r 9  = constant = A 

3 
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V 
( sv' + y v)t - (7 t "V v') = 0 

that is, 

From the above, wc can .leterrnine the unknowns, rS v, and w. 

For  the case of thickness varying with s, since we have 
3' 

the same calculation gives rise to the following equations: 

d V -[ h ( SV' t V V ) ]  - h (s + V V ' )  
ds 

= 0 

that is, 

V 

S 
h ' (  SV' t v V )  t h (  SV" t V' - - - )  = 0 

and also, 

d 3 3 w' 
- (h  ( SW" + VW')) - h ( z  + v w") = A ds 

that is, 

(24) 
2 3 w') = A 

3h h' (SW" t v W' ) t h ( SW'" t W" - - 
S 

4 
8 

Suppose, then, that at corresponding points, the values N 

and N are equal for both shells. For the curved shell, N and N 
8 3 

have the known values F(+) and G($) as a function of the angle of 

inclination, r$ , and we write, 
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so that equation (23)becoixes, 

d 

ds 
- [ SF(+)] - G(+) = 0 

We consider that this equation establishes the relation for which we 

were searching, between the abscissa s on the planar disc and angle 

3 of the ogive curve ( 3 and u a r e  equivalent here). 

can be written, 

This relation 

ds F W )  d3 
S G(44 - - =  

thereby giving s a s  a function of (3 through a quadrature. 

This relation having been obtained, equations (25) and (26) 

give, 

V 

S F(3 1 v' t v -  
= -  

G(C, ) 
V 

S 
- t v VI 

VI 
from which we find v by integrating the linear equation giving - 
as a function of s. 

V 

Next, e i ther  equation (25) o r  (26) will give the desired value 

of the thickness h as a function of s. 

become a differential equation in w ( equation which is otherwise linear) 

to yield this las t  unknown. 

Further, equation (24) will 
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EmXPLE 2 :- TRUNCATED CONE SHELL. 

Along the same lines of reasoning as in the example of the 

ogive of revolution, let us now consider an equally interesting case 

that of a truncate 1 cone shell and let us letermine what would be the 

characteristcs of a corresponding planar disc having a hole in the center. 

The formulae to be used are obviously related to those we 

have developed on pagee U 12 pand 13. However, the analysi@ must 

be morHtird dace we no longer have the prerence of the peak of *e 

cone,* take into account, 

We recall the formulas for the etraine, N, and the momento, 

M: 

dv V 
t - ( v t wtana ) 3 N S = D [ z  8 

t V * ]  
v t wtana 

S ds = D[ Ne 

v dw 2 
d w  

ds 
M = K[- 2 + F Z J  8 

2 d w  

ds 
t v - ]  - 1 d w  

Me - K[,= 2 

with 

On the other hand, the equilibrium equations are: 
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- . .: d 
;( sMs) - M* - S 

From these last equations, we have, 

t sN t a n a )  = ps d 
ds ( scs S 

s? t sN tana = - ps t P 

that is , 
2 

8 S 2 

where P is an arbitrary constant. Thus, we have, 

P PS 
S S S 2 N = - 0 cota + -cota t -cota 

On the other hand, equations (2s)can be written, 

2 N - V  Na = D ( l - v  )VI 
S 

2 v t wtana Ne - V N  = D ( l - V )  
S 

and equations (29) substituted intv the last of (30) , give 

Let us now eliminate v between the two formulas of (32) . We have, 

2 
s ( Nt - v N', 1 f ( 1  t u  )( N8 - Ns) = D(l - v )wltana (341  

S t 

where 

last formula, let us replace N by its value given in  (31) , and N 

by the expression derived fro-m (30) 

designates differentiation with respect to the arc s. In this 

8 S 

2 
t P t y )  cota 

d N = - ( - s - I Z s  ds 
8 

Letting 

3S 
T =  

equation leads to the following result after Borne simplifications, 

(35) 

(36) 
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Using the symbolic operator, 

0 L = s( )!' t ( )' - - 
S 

we can write equations (33) and (37)in the form, 

T = K L(w') 

1 - 2 v  
PS t- 

2 2 P D ( 1  - v )w'tan a = - L (T) - - 
2 S 

(39) 

Let us eliminate w' between these last two equations. Letting, 

2 2 
D ( 1 - v ) tan a - - 4 

K 
6 

we obtain, 

4 1 6 T = - L L T  - P L ( -  
S 

However, it is easy to see that we have, 
1 L ( s ) =  0 ; L(;)  = 0 

Our final equation defining T is a s  follows, 

L L ( T )  t 6 4T = 0 (40) 

W-e recognize this to be the same equation a s  that of W. 

Flugge on page 324 of his classic work. 

in the following forms: 

This equation can be written 

2 2 2 
L ( L T  t i (j T )  - i 6 ( L T  t i 6  T )  = 0 

2 (41) 2 2 
i 7 k s T  =o L ( L T  - i 6  T )  t i 6  ( L T  - i 6  T )  = 0 
b -  

So that equation (40) possesses solutions of simpler equations: 

the equation in T is linear, it is  sufficient, thanks to the presence 

of the imaginary parts,  to integrate one of the equations (41) in 

order  to obtain four solutions of (40) , and consequently to have the 

general solution. 

Since 

A s  is well known, the change of variable@ 

ll 
transforms the first equation (40) into the Bessel equation 
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such that, adopting the notationssfound in the work of Watson, equation 

(42) has as i ts  integral, 

Let 

and let  us use the Themson formulas to separate the real  and the ima- 

ginary parts. Thus, 

2 2 
Y 

J2 ( q ) = Tbei'y - bery t i(- ber'y t beiy ) 

which immediately gives the four solutions of (40) 

Because of the definition (36) of T, we have for c) the 
8 

following expression, 

1 2 2 
Y 2 Y Al ( bery - -bei'y ) t A ( beiy t - ber'y ) 

where the A's and the B's a re  arbitrary constants. 

We next have N by means of equation (31), then N 
S 3 

from 

equation (34). We solve for  w by integrating 

1 
which is elementary since we have noted above that L(s) and L(-) S 

a r e  null. 

W e  thus find, 
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wI = as t - +  b S L / T d s  2K - - 2Ks Ss'Tds 

from which we find w and consequently v; 

give the MIS. 

Next, formulas ( 2 9 )  will 

The problem is then resolved. It entails seven arbitrary 

constants ( not counting the constant of integration for w),  namely, P 

AI, A2, Bl, BZh, a, and b. These constants will be determined from 

the boundary conditions imposed on the system. 

that could ar ise  will be strictly of numerical computation nature. 

The only difficulties 
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